
ME 227.3 Thermodynamics I Department of Mechanical Engineering University of Saskatchewan Final Examination 2:00pm December 17, 2005

Name:	
Student Number:	
Signature:	

Please read these instructions carefully.

- Time: 3 hours
- Total marks: 100
- Calculators allowed.
- Closed book exam.
- Formula sheet supplied.
- This exam contains SIX questions.
- No Walkmans, Discmans, IPODs or similar devices allowed.
- No PDAs or laptops allowed.
- No cell phones allowed.
- Please place photo ID on the corner of the table during the exam.
- (10) 1. Define the following terms.
 - (a) Unrestrained expansion
 - (b) Total energy
 - (c) Heat engine

- (d) Flow work
- (e) Closed system
- (10) 2. Two Carnot heat engines (A and B) receive heat at the same rate and produce the same power. Determine T_2 .

- (20) 3. A piston-cylinder device contains 0.6 kg of air and undergoes a cycle consisting of the following three reversible processes starting from 100 kPa and 300 K.
 - (a) constant temperature process
 - (b) constant pressure process
 - (c) adiabatic process

The net work done during the cycle is 20 kJ and the air may be treated as an ideal gas with $R = 0.287 \,\mathrm{kJ/(kg \cdot K)}$ and constant k = 1.4. Sketch the cycle on a P-v diagram and determine the maximum pressure.

(20) 4. A boiler receives saturated liquid water at 0.25 kg/s and 40 bar and converts it to a saturated vapour which then passes through a nozzle with an isentropic efficiency of 95%. The nozzle exit pressure is 1 bar. Determine the heat transfer rate to the boiler, the nozzle exit velocity, and the rate of entropy production for the entire system.

- 5. A vapour-compression refrigeration system uses R134a as its working fluid and operates between 0.6 bar and 6 bar. The coefficient of performance is 3.03 and the isentropic efficiency of the compressor is 90%. If the compressor inlet temperature is −20°C and the compressor requires 5.5 kW of power, what is the temperature on each side of the throttling valve and the mass flow rate of the refrigerant?
- (20) 6. An ideal Rankine cycle operates with a single reheater at 500 kPa. The steam generator pressure is 60 bar and the condenser pressure is 10 kPa. The exit of the condenser is a saturated liquid and the inlet to the reheater is a saturated vapour. Heat is added in the reheater at a rate of 20 MW and the mass flow rate delivered by the steam generator is 50 kg/s. Calculate the cycle efficiency.