Department of Mechanical Engineering University of Saskatchewan

ME324.3 Engineering Materials

Mid-Term Examination (Closed Book)

Stu	ıdent Nam	e:			Student #:
Ins Tir	tructor: ne Allowed	d:	I. Oguocha 2 Hours		24 October, 2003.
Sec	ction A:	Mul Ans Circ	tiple Choice Questions wer ALL questions. ele the correct answer w	here ro	(50 Marks) There is NO Penalty for Guessing. equired (i.e., Questions 6 to 50)
In	Questions	1-5 ir	ndicate whether a stateme	nt is T	rue (T) or False (F)
1.			An <i>edge dislocation</i> is perpendicular to the disl	s char location	acterized by its burgers vector, which is a line vector.
2.	2 <i>Allotropy</i> or <i>polymorphism</i> is a property exhibited by many elements they crystallize in different crystal structures at different ranges temperature and pressure.				a property exhibited by many elements that crystal structures at different ranges of
3.			A screw dislocation is obtuse angle with the di	charac slocatio	terized by its burgers vector, oriented at an on line vector.
4.			Electron microscopes p magnification than optic	orobe c cal mici	rystal structures with greater resolution and coscopes.
5.			An <i>intermetallic composion</i> one of the components A	<i>und</i> , su A or B	ch as AB ₂ , always has the crystal structure of
6.	The prope (A) Hardn (C) Fatigu	erty o ness ue	f a metal that causes it to	break v (B) (D)	with little or no bending is Toughness Brittleness
7.	The prope (A) Hardn (C) Streng	erty of ness gth	f a metal that refers to its	ability (B) (D)	to withstand shock without cracking is: Toughness Elasticity

Use the Figure below to answer Questions 8 to 11.

(B)

(D)

(B)

(D)

(B)

- 8. The defect labelled W is (A) Frenkel defect (C) Interstitial atom
- **(B)** Vacancy
- Schottky defect (D)

Substitutional atom

Substitutional atom

Schottky defect

- 9. The defect labelled X is (A) Frenkel defect (C) Intersticialcy
- 10. The defect labelled **Y** is
 - (A) Self-interstitial (C) Interstitial atom
- 11. The defect labelled Z is (A) Self-interstitial
 - (C) Interstitial atom
- 12. The figure below shows the formation of
 - (A) Dislocation
 - (C) Frenkel defect

Substitutional atom

Schottky defect

- **(B)** (D) Schottky defect
 - Schottky defect
- Planar defect (D)

- 13. Regions within a metal that are high energy and form as a result of cooling into a polycrystalline solid
 - (A) Voids

Boundaries **(B)** Lattice

(C) Interstices

2

(D)

14.	 Which of the following statements is false? (A) Doping of silicon with phosphorus is made possible by diffusion (B) Formation of pearlite from austenite is brought about by diffusion (C) Diffusion makes it possible for a bottle of perfume uncapped in one part of a room to be felt in a distant corner of the room. (D) Martensite forms by a diffusional process. 						
15.	A combination of two or more metals, a_{1} is called $a(n)$.	one of w	which is <i>intentionally added</i> to the base metal,				
	(A) Mixture	(B)	Solution				
	(C) Compound	(\mathbf{D})	Alloy				
	(C) Compound	(D)	Alloy				
16	In an allow, the material that dissolves t	he allow	ving element is called the				
10.	(A) Solute	(\mathbf{R})	Solvent				
	(C) Allotropo	(\mathbf{D})	Motrix				
	(C) Anouope	(D)	Maultx				
17	The furness for converting iron are inte	nia ira	whis called the				
1/.	The furnace for converting from one find (A) DD furnace	(\mathbf{p})	Onen hearth furness				
	(A) DR Iumace	(D)					
	(C) Basic oxygen furnace	(D)	Blast furnace				
10	The type of iron mode by using a direct	noduct	(DP) furnaça is called				
10.	(A) Deduced incu	(D)	Some (DK) fulliace is called				
	(A) Reduced Iron	(B)	Sponge iron				
	(C) Wrought from	(D)	Alpha iron				
19.	The material used in ironmaking proces to form slag is	ss that c	ombines with the ash and iron ore impurities				
	(A) Hematite	(B)	Coke				
	(C) Limestone	(D)	Hot air				
	(1)	(-)					
20.	The purest form of iron that is commerce hooks	cially av	vailable that is used in making chains and				
	(A) Pig iron	(B)	Sponge iron				
	(C) Wrought iron	(D)	White cast iron				
21.	The IPSCO steelmaking plant in Regina	a uses _	as a major source of raw materials.				
	(A) Scrap	(B) [–]	Aluminum				
	(C) Silica	(D)	Lead				
22.	Metal alloys that can be mechanically d	leforme	d at ambient and elevated temperatures are				
	(A) Cast alloys	(B)	Deformed alloys				
	(C) Wrought alloys	(D)	Plastic allovs				
	(-)	()					
23	Malleable iron is made from which of t	he follo	wing irons				
	(A) Pig iron	(B)	White cast iron				
	(C) Grav cast iron	(\mathbf{D})	Wrought iron				

24. Another name for **nodular** cast iron is

(A) Malleable	(B)	Gray
(C) Ductile	(D)	Pearlitic

25. From thermodynamic viewpoint, the driving force for a phase transformation is

- (A) Dislocations (C)
- (B) Change in entropy (ΔS) (D) Change in free energy (ΔG)

Change in enthalpy (ΔH)

26. Which of the following statements is **false** about the change in free energy of a reaction:

- (A) If $\Delta G = 0$, the reaction is at equilibrium
- (B) ΔG determines the rate of a spontaneous reaction
- (C) If $\Delta G < 0$, the reaction is spontaneous in the specified direction
- (D) If $\Delta G > 0$, the reaction is not spontaneous in the specified direction.
- 27. Which of the following statements about binary equilibrium phase diagrams is false:
 - (A) Maps that show the melting points of the constituents
 - (B) Maps that show different phases of the binary system
 - (C) Maps that show the different constituents of the binary system
 - (D) Maps that show the relative amounts of phases present in the binary alloy system
 - (E) None of the above
- 28. In phase diagrams, lines of maximum solubility of *terminal* or *first-formed solid solutions* are called

(A) Liquidus lines	(B)	Solidus lines
(D) Solvus lines	(D)	Invariant lines

- 29. The curve that represents the temperatures at which solidification begins is called
 - (A) Liquidus (B) Solidus
 - (D) Solvus (D) Eutectic
- 30. An isomorphous binary alloy system is one with
 - (A) Complete liquid and solid solubility
 - (B) Complete solid solubility and partial liquid solubility
 - (C) Complete liquid solubility and partial solid solubility
 - (D) Complete liquid solubility and solid insolubility
 - (E) None of the above
- 31. What pressure is normally used in constructing equilibrium phase diagrams of alloys?
 - (A) 10 psi (B) Depends on the material
 - (C) Ambient (D) Normal atmospheric pressure

Use the Figures (a) and (b) below to answer Questions 32 and 33

(B)

(D)

- 32. Figure (a) above contains this type of material a(n)
 - (A) Congruent intermetallic
 - (C) Dissociating intermetallic
- Incongruent intermetallic
- Terminal solid solution
- 33. Figure (b) above contains this type of material a(n)
 - (A) Congruent intermetallic
- (B) Incongruent intermetallic
- (C) Dissociating intermetallic (D) Terminal solid solution
- 34. The following *invariant reactions* occur in low-carbon steels (i.e., wt% C \leq 0.25):
 - (A) Eutectic and monotectic
 - (B) Eutectic and eutectoid
 - (C) Eutectic, eutectoid, and peritectic
 - (D) Euectoid and peritectoid
 - (E) Eutectoid and peritectic
- 35. A two-phase mixture of ferrite and cementite is called
 - (A) Austenite (B) Steel
 - (C) Pearlite (D) Ledeburite
- 36. One of the following phases/microconstituents is best described by the following: - Low yield strength, very ductile, low carbon solubility
 - (A) Cementite(B) Pearlite(C) Austenite(D) Ferrite
- 37. One of the following phases/microconstituents is best described by the following: - Medium yield strength, medium ductility, fixed carbon content
 - (A) Cementite (B) Pearlite
 - (C) Austenite (D) Ferrite
- 38. One of the following phases/microconstituents is best described by the following: - High vield strength, low ductility, Fe:C ratio of 3:1
 - (A) Cementite (B) Pearlite
 - (C) Austenite (D) Ferrite

39. In the Iron-Fe₃C system, the maximum solubility of carbon in α -iron is approximately

(A) 0.008 wt.%	(C)	0.77 wt.%
(B) 0.022 wt.%	(D)	2.11 wt.%

40. The amount of pearlite in unhardened plain-carbon steels increases as the carbon content is increased up to what percentage?

A.	0.08 wt.%	C.	1.70 wt.%		
B.	0.022 wt.%	D.	0.77 wt.%	E.	6.69 wt.%

41. Carbon content of cast iron range	s roughly from	m
(A) 0.022 to 0.77 wt.%	(B)	0.6 to 1.0 wt.%
(C) 2 to 4.5 wt.%	(D)	4 to 6 wt.%

42. Graphite in a metal promotes

(A) Toughness	(B)	Malleability
(C) Lubricity	(D)	Magnetism

43. Two major types of martensite form in steel alloys, depending on the carbon content.

- (A) Upper martensite and lower martensite
- (B) Upper martensite and nodular martensite
- (C) Plate martensite and nodular martensite
- (D) Lath martensite and nodular martensite
- (E) Lath martensite and plate martensite

44. Two major types of bainite form in steels, depending on the quenchant temperature

- (A) Upper bainite and lower bainite
- (B) Upper bainte and nodular bainite
- (C) Plate bainite and nodular bainite
- (D) Upper bainite and pearlitic bainite
- (E) Long bainite and short bainite
- 45. Which of the following statements is **inconsistent** with the decomposition of *retained austenite* in plain-carbon steels.
 - (A) Retained austenite decomposes at tempering temperatures between 200 and 300°C with austenite transforming into bainite.
 - (B) Retained austenite decomposes at tempering temperatures between 200 and 300°C with austenite transforming into pearlite.
 - (C) Large dimensional changes and some softening occur when austenite transforms to bainite.
 - (D) Retained austenite is present only in plain-carbon steels containing more than 0.4% C.
- 46. The process of changing the mechanical properties of metals by heating and cooling them while in a solid state is called:

(A) Isoforming	(B)	Tempering

(C) Hardening (D) Heat treating

47. The type of heat treatment process in which the metal is rapidly cooled

- (A) Annealing (B) Equilibrium
- (C) Non-equilibrium (D) Normalizing

48. Annealing operation that is intended for the sole purpose of relieving stresses is called

- (A) Supercritical anneal (B) Tempering
- (C) Martempering (D) Stress relief

49. Heat treatment of steels that yields maximum machinability, minimum hardness, and maximum ductility

(A) Tempering	(B)	Annealing
(C) Spheroidizing	(D)	Austenitizing

50. A heat treatment process used to relieve stresses and refine grains that requires heating well above the upper critical temperature followed by cooling in air is called

- A. Austempering C. Intercritical annealing
- B. Normalizing D. Full annealing

SECTION B: ANSWER ALL QUESTIONS

Question 1: (6 Marks)

Use the schematic equilibrium phase diagram of pure iron shown in **Fig. Q1** to answer the following questions:

(a) How many *triple points* appear in Fig. Q1?
(b) State the *phases* that co-exist at each of the triple points identified in (a)
(c) How many *degrees of freedom* are there at the three triple points?
1
(d) How many degrees of freedom are there along the liquid-gas condensation line?

Question 2: (5 Marks)

(a) Label the six regions of Fig. Q2. A and B forms an intermetallic phase *AB*. 3

(b)	How many	eutectic points	are there in	Fig. Q2 ?	1
-----	----------	-----------------	--------------	------------------	---

(c) What *type* of intermetallic phase is formed by A and B?

Question 3: (9 Marks) Use **Fig. Q3** to answer the following questions

Fig. Q3.

(a) State the *phase*(s) that exist(s) in the region marked

(b)

(c)

(d)

(i)	X ₁ :	0.5
(ii)	X ₂ :	1
(iii)	X ₃ :	0.5
(iv)	X4:	1
(v)	X ₅ :	1
Label	the lines indicated by the arrows, using A_1 , A_2 , A_3 , A_4 , A_{cm} , Iron carbide.	2
After in the	cooling a steel through the eutectoid, what <i>phase or microconstituent</i> exists region marked by \bullet in Fig. Q3?	1.5
What	is the wt.% of carbon in the phase/microconstituent in (c)?	1.5

Question 4: (7 Marks)

(a) Use well-labelled diagrams to distinguish between a *grain boundary* and a *phase* 3 *boundary*.

(b) How is the strength of pearlite affected by the interlamellar spacing?

2

(c) Name the **two stages** involved in the formation of particles of a new phase. 2

Question 5: (10 Marks)

(a) State two differences between an *equilibrium phase diagram* and a *TTT diagram*. 2

(b) State two differences between *pearlite* and *martensite*.

2

- (c) If a thin sample of a *eutectoid* plain-carbon steel is austenitized, hot-quenched in a molten salt bath at 270 °C and held there until transformation is complete, what will be its final microstructure?
- (d) If a thin sample of a *eutectoid* plain-carbon steel is water-quenched from the austenitic region to room temperature (25 °C), what will be its final microstructure?

(e) State **two** heat treatment processes that do not involve phase transformation. 2

Question 6: (13)

(a) Why are *thin specimens* used for constructing TTT diagrams?

2

- (b) State **two** major structural problems (*defects*) encountered when quenching thick steel **2** parts.
- (c) State two isothermal heat treatment techniques employed in steel processing industry 2 to overcome the two problems mentioned in (b).
- (d) Five thin samples of AISI-SAE 1080 steel are austenitized at 800 °C for 1 h. The different samples are subjected to the following thermal treatments. Use the given TTT diagram and other knowledge to determine the microstructure of the steel samples after each heat treatment.
 - (i) One sample is quenched to 700 °C in molten salt bath for 5 s and quenched to 1 100 °C.
 - (ii) One sample is quenched to 650 °C in molten salt bath for 10^3 s and quenched to 1 -100 °C.
 - (iii) One sample is quenched to 300 °C in molten salt bath for 500 s and quenched to -100 °C.
 - (iv) One sample is quenched to 250 °C in molten salt bath for 100 s and air-cool. What is the name of this thermal treatment?
 - (v) One sample is quenched to -100 °C, reheated to 650 °C and held for 20 h and then quenched to room temperature. What is the name of this thermal treatment? 2

Fig. Q5