ME 335 FLUID MECHANICS 11

Department

of Mechanical Engineering

University of Saskatchewan

Midterm Exam

Thursday, February 13, 2014, 1:00 — 3:00 p.m.

Instructor: Prof. David Sumner

PLEASE READ CAREFULLY:

This exam has 10 pages. The exam is “closed book.” An equation sheet is provided for your use
during the exam. No calculators are allowed. No cell phones or any other electronic devices are

permitted.

There are 4 problems on the exam worth a total of 100 marks. Attempt all 4 problems. The
number of marks assigned to each part of a problem is indicated in the left hand column.
Answers are to be written on the exam question sheets in the spaces provided. If you need more
room, use the back of the sheet. Please ensure that your answers are clear and legible. Please
puta E around, or underline, your final answers (where appropriate).

Name: SOLUOTIONS

Student No.:

Signature:

Problem | Relevant Learning Outcomes Grade
1 LO1, LO2, LO3, LO4 /15
2 LO2, LO3, LO4 /15
3 LO1,L02 30
4 |1O3 /40
Total: /100

Relevant Learning Outcomes:

LO1: Use the differential equations of fluid motion in Cartesian and cylindrical coordinates to

calculate the fluid acceleration, velocity, vorticity, pressure, and shear stress fields.

LO2: Classify a flow as inviscid, incompressible, irrotational, steady, and fully developed.

LO3: Simplify the differential equations for the conservation of mass, momentum, and energy
for steady incompressible Newtonian viscous flow, and prescribe appropriate boundary

conditions, to solve for the velocity profile, pressure gradient, and mass flow rate in problems
involving Couette flow, Poiseuille flow, channel flow, and pipe flow.

LO4: Describe the fundamental properties of laminar and turbulent flows and explain the
transition process from laminar to turbulent flow.
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Problem 1 (15 marks)

Fill in the blanks below. D
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i. The solution for shear-driven viscous flow between two parallel plates is known
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j- Insteady, laminar ‘scous, fully developed, incompressible, Newtonian fluid flow (with

constant properties) along a circular pipe, the pressure drop (AP) is directly proportional
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Problem 2 (15 marks)

Provide short, descriptive answers to the following questions.

For the fluid flow between two long concentric rotating cylinders, briefly explain what

a.
happens when the critical value of the Taylor number, Ta, is reached, i.e., when

ra=lile =1V OF ";")39'? ~ 1700,

)

where r; is the radius of the inner cylinder, , is the inside radius of the outer cylinder, £; is
the angular velocity of inner cylinder, and v is the kinematic viscosity.
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b. What is the “Reynolds decomposition,” as applied to the statistical analysis of a turbulent
velocity time-signal, u(f), over a time period, 7? How is the turbulence intensity, TI,,

defined?
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Problem 2 (continued)

C.

Dimensionless pressure gradient data for fully developed flow in a circular pipe are shown in
the figure below. What is the significance of the discontinuity in the graph? For the same
pipe, which fluid would be moving faster at this point of discontinuity, air or water (at
“standard conditions™)?
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Source: Tritton, D.J., 1988, Physical Fluid Dynamics, 2nd Edition, Oxford Oxford 1-Z m / )

University Press, page 20.

Page 4 of 10



Problem 3 (30 marks)

The following velocity field represents an unsteady, compressible, two-dimensional flow of a
Newtonian fluid. The fluid density is only a function of time, i.e., p= p(¢) only.
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Problem 3 continues on the following page
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Problem 3 (continued)

5 b. Find the local acceleration of the fluid.
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10 c. Find the convective acceleration of the fluid.
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Problem 4 (40 marks)

Pressure is driving a viscous liquid from left to right along the narrow horizontal channel shown
in the figure below. The upper wall of the channel is fixed. The pressure-driven flow is
counteracted by a moving belt that forms the lower wall of the channel, as shown in the figure.
The belt moves from right to left at a constant velocity, V. Gravity may be neglected.

Fixed channel wall

LU,

$

g Pt K
- Moving belt S
x QUL TG

The flow is steady, viscous, incompressible, and laminar. The height of the channel is . The

liquid is Newtonian with constant properties, p, u, k, and c. The flow is two-dimensional and
purely axial, i.e. v=w=0.

5 a. Show that if the flow is purely axial, then it follows that the flow must also be fully
developed.
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5 b. Specify the boundary conditions for the axial velocity profile, u().
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Problem'4 continues on the following page
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Problem 4 (continued)

10 c. Using the Navier-Stokes equations, show that the pressure is a function of x only,i.e. P=
P(x) only.
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Problem 4 continues on the following page
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Problem 4 (continued)

10 d. Using the Navier-Stokes equations, find an expression for the velocity profile, u(y). -
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Problem 4 (continued)

10 e. Consider the special case where there is no pressure gradient, and the flow is solely driven by
the belt. If the temperature profile is steady and fully developed, i.e. 7= T() only, and both

walls are at the same temperature, Twan, use the differential equation for the conservation of
energy to find the temperature profile, 7(y).
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